Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nutr Biochem ; 115: 109278, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36739097

RESUMEN

Sesamol (SEM), a lignan from sesame oil, exhibited potential benefits on obesity treatment by promoting browning of adipocytes, and the current study is aimed to explore the molecular mechanisms of SEM from the aspect of systemic liver-adipose crosstalk that mediated by hepatic fibroblast growth factor 21 (FGF21). Our in vivo data showed that SEM induced energy expenditure and white adipose tissue (WAT) browning by increasing the expression level of uncoupling protein-1 in high fat diet induced obese C57BL/6J mice. Elevated levels of circulating FGF21 associated with the increased expression of hepatic FGF21 were observed after SEM intervention. Simultaneously, the increased adipose fibroblast growth factor tyrosine kinase receptor 1/beta-klotho indicated that FGF21 sensitivity was enhanced by SEM in WAT. Furthermore, our in vitro results from HepG2 and 3T3-L1 cell lines confirmed the effects and revealed the mechanism of SEM on the white adipocytes browning. We found that with the specific inhibitors of PPARα, the SEM-mediated hepatic FGF21 expression was decreased, and with the specific inhibitors of PPARγ, the browning effect of adipocytes by SEM combining with FGF21 was significantly suppressed. Taken together, the mechanism of SEM for inducing the WAT browning might be the modulation of SEM on liver-adipose crosstalk mediated by FGF21, and the PPARs family might be the targets of SEM. The novel findings from the present study provided evidence that SEM could be a potent obesity-treating compound.


Asunto(s)
Adipocitos Blancos , Hígado , Ratones , Animales , Adipocitos Blancos/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Obesidad/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Pardo/metabolismo
2.
J Agric Food Chem ; 70(7): 2253-2264, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35166533

RESUMEN

Obesity can evoke changes of skeletal muscle structure and function, which are characterized by the conversion of myofiber from type I to type II, leading to a vicious cycle of metabolic disorders. Reversing the muscle fiber-type conversion in obese states is a novel strategy for treating those with obesity. Sesamol, a food ingredient compound isolated from sesame seeds, exerted potential antiobesity effects. The present research aimed to explore the therapeutic effects of sesamol on obesity-related skeletal muscle-fiber-type conversion and elucidate the underlying molecular mechanisms through utilizing a high-fat-diet-induced obese C57BL/6J mice model and palmitic acid-exposed C2C12 myotubes. The results showed that sesamol attenuated obesity-related metabolic disturbances, elevated exercise endurance of obese mice, and decreased lipid accumulation and insulin resistance in skeletal muscle. After the treatment with sesamol, the muscular mitochondrial content and biogenesis were increased, accompanied by the enzyme activities and myosin heavy-chain isoform changed from type II fiber to type I fiber. Mechanistic studies revealed that the effects of sesamol on reversing skeletal muscle-fiber-type conversion in obese states were associated with the stimulation of the muscular sirtuin 1 (SIRT1)/AMP-activated protein kinase (AMPK) signal pathway, and these effects could be inhibited by a specific inhibitor of SIRT1, EX-527. In conclusion, our research provided novel evidence that sesamol could regulate myofiber-type conversion to treat obesity and obesity-related metabolic disorders by stimulating the muscular SIRT1/AMPK signal pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Sirtuina 1 , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Benzodioxoles , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Fenoles , Transducción de Señal , Sirtuina 1/genética , Sirtuina 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...